
Do Containers fully
'contain' security issues?

A closer look at Docker and Garden.
Farshad Abasi / Mirai Security Inc.

About Me

⊡Farshad Abasi
□ Based in: Vancouver, BC, Canada

□ Co-founder: Mirai Security

□ CTO/CISO: Machool Technologies

□ Instructor: British Columbia Institute of

Technology

□ News correspondent: CFAX AM1070 (Victoria)

□ Board member: BSides Vancouver / MARS

□ Avid music fan!

Overview

⊡ Computing in “The Cloud”
⊡ What are Containers?
⊡ The Supporting Cast
⊡ Containerization vs. Virtualization
⊡ Behind The Scenes: Docker
⊡ Behind The Scenes: Garden
⊡ Key Security Concerns
⊡ Known Vulnerabilities
⊡ Safe Container Practice
⊡ Conclusion
⊡ Q&A

Computing in “The Cloud”

“
Computing in “The Cloud”

“a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool
of configurable computing resources (e.g.,

networks, servers, storage, applications, and
services) that can be rapidly provisioned and
released with minimal management effort or

service provider interaction.”
- SP 800-145, The NIST Definition of Cloud Computing

Computing in “The Cloud”

⊡ Cloud computing requires a workload isolation
mechanism
□ Physical separation (aka Bare-metal Cloud)

■ Addresses covert channels & defects in H/W protection mechanisms

□ Virtualization (aka Hardware Virtualization)
■ Used to provide IaaS

■ Vulnerabilities related to CPU or hypervisor can have impact

□ Containerization (aka OS-level virtualization)
■ Used to deliver CaaS or PaaS

□ Multi-user accounts within a single application
■ In other words: SaaS

Computing in “The Cloud”

PaaS/CaaS

IaaS

Bare-metal

SaaS

M
O

R
E

C
O

N
TR

O
L

 L
ES

S
C

O
N

TR
O

L

INFRASTRUCTURE
ARCHITECTS/ADMINS

APPLICATION
ARCHITECTS/DEVELOPERS

END-USERS

What are Containers?

What are Containers?

⊡Containerization (aka OS-Level Virtualization)

□ Multiple isolated user-space instances sharing a kernel

□ Each instance = a container

■ aka partition, virtualization engine (VE) or jail (e.g.

FreeBSD jail or chroot jail)

■ seems like a regular machine from the inside

⊡Encapsulate applications + act as interface to

the surrounding system

⊡Kernel provided resource-management

□ limits impact of a container’s activities on others

What are Containers?

⊡ Chroot

□ Has been around since Version 7 Unix (‘79)

□ Isolates filesystem views for process + its children

□ Does not isolate other resources (e.g. networking, processes, etc.)

□ Root account has full view/access

⊡ Modern containers use:

□ Namespaces to separate resources

■ PID (process ID), Mount, Network, UTS (hostname + NIS domain name), IPC,

and User namespaces (arguably most important, not always implemented)

□ Cgroups to meter and limit resources, control access to device

node (/dev/*), and perform crowd control

What are Containers?

More on namespaces

⊡ User
□ Namespace for UIDs and GIDs

□ A given user ID (e.g. 0 or root) inside the container will map to a different

user ID on the host

□ Fairly new and there have been known vulnerabilities at the start

□ System calls and security logic should be namespace aware and check the

capability in the correct namespace

■ incorrect checking may lead to “CLONE_NEWUSER|CLONE_FS” root

exploit type vulnerabilities

□ Exploits are still possible even with user namespaces enabled

⊡ Network
□ provides a separated net stack for each container

□ Widely used (“NET_RAW abuse” explores typical flaws in this namespace)

What are Containers?

More on namespaces

⊡ PID
□ Process ID namespace, allowing each container to have a fully isolated

process tree (with an ‘init’ process the runs as PID 1 in its namespace)

□ The PID will be different inside the container than on the host

(vulnerabilities have shown that this info can leak)

⊡ Mount
□ Used to separate the filesystem for each container (pivot_root sys call is

used in conjunction)

⊡ IPC
□ Deals with SystemV IPC and POSIX message queues

⊡ UTS
□ System identifiers, used to provide container specific hostnames

What are Containers?

Linux Security features used to secure containers

⊡ Cgroups (aka control groups)

□ Limit, accouns for, and isolate the resource usage (CPU, memory,

disk I/O, network, etc.) of a collection of processes

□ Can also be used along with iptables for traffic shaping

⊡ Capabilities

□ Allow the breakdown of root role into pieces that can be granted

to non-privileged processes to perform privileged actions

□ The set assigned to a process carries forward to child processes

What are Containers?

Linux Security features used to secure containers (cont’d)

⊡ MAC (Mandatory Access Control)

□ Limit the actions of a program

□ Hooks provided by Linux Security Modules (LSMs) such as AppArmor

□ Both Docker and LXC both have this enabled

□ SELinux is also an option, but not as well supported and documented

⊡ Seccomp: used to filter system calls

□ “strict” mode only allows a small set of system calls (can’t be modified)

□ In “filter mode” filters are written using BPF (Berkeley Packet Filter)

programs allowing more finely-grained policies

□ Docker supports seccomp-bpf

■ ptrace vulnerability bypasses seccomp

What are Containers?

Container uses:

□ Allocation of finite hardware resources (same as H/W virtualization)

□ Improved hardware independence and added resource management
■ Can package an app and its dependencies in a container

□ Hosting API/microservices

□ Automates deployment of applications

■ Distribution method for software to guarantee reproducibility

■ DevOps tools for testing and deploying code

□ Building blocks for a PaaS

□ Common in virtual hosting

□ Security??

What are Containers?

⊡Modern implementations

make containers easier to use

□ Docker Engine,

Cloud Foundry Garden

⊡Some are designed to run

multiple processes and

services, some only run a

single service

□ Operating system containers

vs. application containers

The Supporting Cast

The Supporting Cast

⊡ Container schedulers
□ Allow scale-out, load balancing, adding storage or network

resources, maintaining HA and recoverability

□ E.g. Docker Swarm, Kubernetes, CF Diego

⊡ Container packaging and staging
□ E.g. OpenShift S2I, CF buildpacks

⊡ IaaS orchestration
□ E.g. Red Hat Ansible, CF BOSH

⊡ Platform as a Service (PaaS)
□ E.g. OpenShift, Cloud Foundry

⊡ Tools evolved at the same time independently

Containerization vs.
Virtualization

Containerization vs.
Virtualization

⊡Containerization
□ Containers share the same OS kernel

■ Cannot use containers with different operating systems

□ Faster, lightweight, more portable, scale more efficiently
■ No H/W emulation

□ Do not provide the same level of isolation as virtualization

⊡Virtualization
□ Mature with an extensive ecosystem

□ Allows for mixed kernels on the same platform

□ Host emulates the hardware provided to the VM
■ looks like it is running on separate hardware

□ Hypervisor is the security boundary: More secure

Containerization vs.
Virtualization

Containers share OS kernel and (possibly) binaries and libraries

Behind the Scenes:
Docker

Behind The Scenes: Docker

⊡ Accesses the Linux Kernel

virtualization in many ways

□ Pre-version 0.9, LXC was the default

execution environment

□ Post-version 0.9, runC (aka libcontainer)

written in Go, Open-source, allows for direct

use of Linux virtualization facilities

□ Supports abstracted virtualization interfaces

⊡ Actions done to Docker base images

□ UnionFS layers are created

■ allow for recreation

⊡ Docker daemon runs as root!

Behind The Scenes: Docker

Docker Architecture

Docker Engine Architecture

Behind The Scenes: Docker

Behind the Scenes:
Garden

Behind The Scenes: Garden

Garden Architecture

Behind The Scenes: Garden

⊡Garden = Warden re-written in Go

□ Pluggable back-ends for different platforms

⊡ Garden-runC back-end

□ Linux-specific implementation of the Garden interface

using Open Container Interface (OCI) standard

□ AppArmor is used for all unprivileged containers

□ Seccomp whitelisting restricts access to set of system calls

⊡ ‘wshd’ (Warden Shell Daemon)

□ Root process for managing containers and launching apps

□ Streams standard output and error back to client

Behind The Scenes: Garden

Behind The Scenes:
Garden vs. Docker

Feature Garden Docker

Resource isolation and
control

CPU shares
memory + swap
network bandwidth
disk size quota

CPU shares
CPU sets
memory
memory swap
block device bandwidth

Dynamic resource
management

Feature supported but not
used

Not supported.

Image management Only whole images can be
reused to create new
containers.

Layered—allows for reusing
separate layers.

Linking containers no yes

Exposing ports Multiple ports per container Multiple ports per container

Key Security Concerns

Key Security Concerns

⊡ User namespace support

□ Supported in Garden and Docker

■ Not enabled by default in Docker

□ Without it, processes running as root inside a container

can have root access everywhere

□ Has to be configured properly and not break programs

⊡ Namespaces do not cover everything in Linux

⊡ Imperfect design and code

□ Increases attack surface

□ Namespace leaks present in many containers

□ Many containers have had little security analysis

⊡Docker’s images verification is not 100%

Key Security Concerns

⊡Shared Kernel = any vulnerability in Kernel
can impact all containers
□ OS Kernels provide much more functionality than

Hypervisors: larger attack surface

□ Kernels will always have vulnerabilities and containers
directly expose it to programs

⊡Containers were not designed to ‘contain’
security issues

Key Security Concerns

⊡Covert channels
□ Provide capability to transfer information between

processes that are not allowed to communicate

□ Storage channels
■ Communicate by modifying a "storage location"

□ Timing channels
■ Perform operations affecting response time observed by the receiver

□ Difficult to completely prevent on the same processor

□ Techniques for locating potential covert channels:
■ Analyzing the resources of a system

■ Source-code level analysis

□ Possibility can be reduced by careful design and analysis

Key Security Concerns

⊡Defect in hardware protection mechanisms
□ Computer hardware is complex

□ DRAM Rowhammer bug used to gain kernel privilege
■ Enables change to values in other programs/kernel

□ Exploit demonstrated by Google on a variety of systems

Known Vulnerabilities

Known Vulnerabilities

⊡Docker: 14 vulnerabilities identified so far

⊡PCF/Garden: 11 vulnerabilities identified so far

Year

of
Vulnerabilitie

s DoS
Code

Execution Overflow
Memory

Corruption
Sql

Injection XSS
Directory
Traversal

Http
Response
Splitting

Bypass
something

Gain
Information

Gain
Privileges CSRF

File
Inclusion Other

2014 6 2 1 1 2
2015 3 1 1 1
2016 2 1 1
2017 3 1 2
Total 14 1 2 2 1 3 5

% Of All 7.1 14.3 0 0 0 0 0 0 14.3 7.1 21.4 0 0 35.7

Year

of
Vulnerabilitie

s DoS
Code

Execution Overflow
Memory

Corruption
Sql

Injection XSS
Directory
Traversal

Http
Response
Splitting

Bypass
something

Gain
Information

Gain
Privileges CSRF

File
Inclusion Other

2016 4 2 1 1
2017 7 1 1 1 1 1 2
Total 11 1 1 1 1 1 2 1 3

% Of All 9.1 9.1 0 0 9.1 9.1 0 0 0 9.1 18.2 9.1 0 27.3

* Source: www.cvedetails.com

https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/year-2014/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/year-2014/opec-1/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/year-2014/opbyp-1/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/year-2014/opgpriv-1/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/year-2015/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/year-2015/opginf-1/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/year-2015/opgpriv-1/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/year-2016/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/year-2016/opbyp-1/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/year-2016/opgpriv-1/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/year-2017/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/year-2017/opdos-1/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/opdos-1/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/opec-1/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/opbyp-1/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/opginf-1/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13534/product_id-28125/opgpriv-1/Docker-Docker.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/year-2016/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/year-2016/opgpriv-1/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/year-2016/opcsrf-1/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/year-2017/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/year-2017/opdos-1/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/year-2017/opec-1/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/year-2017/opsqli-1/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/year-2017/opxss-1/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/year-2017/opginf-1/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/opdos-1/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/opec-1/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/opsqli-1/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/opxss-1/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/opginf-1/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/opgpriv-1/Pivotal-Software-Cloud-Foundry.html
https://www.cvedetails.com/vulnerability-list/vendor_id-15183/product_id-34752/opcsrf-1/Pivotal-Software-Cloud-Foundry.html

“Containing” Potential Harm

“Containing” Potential Harm

⊡ Group containers on a given VM based classic

segregation principles

□ Use a risk based approach, consider impact and likelihood

⊡ Services should be run as unprivileged

⊡ Privilege should be dropped as soon as not needed

⊡ Treat root inside a container as if it is root outside

the container

⊡ Only run containers from trusted parties

⊡ Follow a layered defense approach

□ Use AppArmor or SELinux

“Containing” Potential Harm

⊡ Standardize and verify hardened host OS

⊡ Scan containers for vulnerabilities

□ OSS modules, licensing, malware, correct configuration

⊡ Measure containers and sign

□ Analyze, sandbox, build profile

□ Confirm signatures at boot: Confirm host OS integrity

⊡ Monitor and detect anomalous behavior

□ Alert, log, or prevent

⊡ Analyze usage logs to:

□ Identify weaknesses, adapt patterns

□ Share learning across different instances

Conclusion

Conclusion

⊡Containers are very useful
□ help ease software management

⊡Work is being done to address security
□ e.g. implementation of user namespaces

⊡ Should be used with caution
□ processes in the container should not be given privileged

access
□ good for deploying apps that are trusted (e.g. same

vendor)

□ other mechanisms such as SELinux, seccomp, AppArmor,
and separate user accounts should be used in conjunction

Q&A
Contact: Farshad Abasi

f.abasi@fwdsec.com

