
Securing Modern API and
Microservice Based

Applications by Design
A closer look at security concerns for modern applications

Farshad Abasi / Forward Security

About Me

⊡Farshad Abasi
□ Based in: Vancouver, BC, Canada
□ UBC alumnus: Biology, Computer Science
□ CSO/Founder: Forward Security
□ Instructor: BCIT
□ News correspondent: CFAX AM1070 (Victoria)
□ Board member: BSides Vancouver / MARS
□ Chapter Lead: OWASP Vancouver
□ Avid music fan and food lover!

This presentation provides an overview of the
subject matter, and architectural take-aways

from a security perspective.

Overview

⊡ What are services and microservices?
⊡ What about APIs?
⊡ The API Gateway and the Post-monolithic World
⊡ Importance of user-level security context and E2E trust
⊡ The Need for AuthZ
⊡ What AuthN and AuthZ Protocols Can I use?
⊡ Invocation by external applications and services
⊡ What other security issues should I care about?
⊡ Take-away considerations

What Are Microservices?

“
Microservices

“Microservices are a software development technique - a
variant of the service-oriented architecture (SOA) architectural

style that structures an application as a collection of loosely
coupled services. In a microservices architecture, services are

fine-grained and the protocols are lightweight.”

- Wikipedia

What Are Microservices?

Monolithic Applications
⊡ Functions tightly coupled together
⊡ Do not scale well

□ Specially when different components had different resource requirements

⊡ Often large and too complex to be understood by one developer
⊡ Slow down development and deployment
⊡ Do not protect components from other components’ issues
⊡ Difficult to rewrite if you need to adopt new frameworks

What Are Microservices?

⊡ General move towards re-architecting traditional ”monolithic”
services and applications

⊡ Applications and services decomposed into smaller “microservices”

What Are Microservices?

⊡ Service Oriented Architecture (SOA)
□ Loosely coupled components, each delivering a specific service
□ Services communicate using an Enterprise Message Bus and SOAP + XML

⊡ Microservices Architecture
□ Also made up of loosely coupled component
□ Each MS delivers a specific function (more fine-grained than SOA)
□ Typically communicate using a gateway and HTTP

What Are Microservices?

Microservices
⊡ Hosted inside containers

■ Lightweight, less overhead

⊡ Typically exposed via APIs
■ Directly or via gateway
■ Light-weight protocols used (HTTP + JSON)
■ Not all MS are exposed externally

⊡ Each one is independent
■ Has its own database
■ Allows for decoupling from others
■ Well suited for Agile and CI/CD

⊡ New set of challenges
■ Complexities of distributed systems

development
■ Maintenance of data consistency

across the microservices
■ Deployment
■ Increased memory consumption

What About APIs?

“
APIs

“(API) In general terms, is a set of clearly defined methods of
communication among various components. A good API makes it

easier to develop a computer program by providing all the building
blocks, which are then put together by the programmer.”

- Wikipedia

What About APIs?

Application Programming Interface (API)
⊡ Used by software components to communicate
⊡ Been around for a long time
⊡ Can be used to build components that work together

□ Inner working knowledge of other components is not required
□ Only need to know what functions are exposed (good separation)

What About APIs?

⊡ Many modern applications are
web-based

□ Expose Web APIs using HTTP and JSON

⊡ Web APIs typically RESTful &
follow ROA

⊡ Used to communicate to:
□ Internal components/functions (intra-

application)

□ External components/functions (inter-
application)

The API Gateway and the
Post-Monolithic World

The API Gateway and the
Post-monolithic World

⊡ Monolithic applications
□ All functions inside the same “walled garden”
□ Protected by single point of entry
□ User-journey does not typically require further AuthN
□ Functions inside cannot be invoked by outsiders
□ AuthZ can happen at gate or functional level

⊡ Microservices
□ No more “wall” with single point of entry
□ Each function/MS could be accessed via its API
□ Need to ensure user is authentic without full re-AuthN

The API Gateway and the
Post-monolithic World

The API Gateway and the
Post-monolithic World

API Gateway - security benefits

⊡Acts as the single point of entry
□ Central enforcement of security policies (AuthN, AuthZ, etc.)
□ Guards the APIs/microservices

⊡Can issue tokens once security policies are met
□ ”Heavy” AuthN takes place at the gateway

■ Should use an IAM to properly handle AuthN + AuthZ
□ Tokens used for “light” AuthN & AuthZ when accessing microservices

■ E.g. ID token and Access Token in OpenID Connect
■ Lowers the exposure of “long term” credentials

The API Gateway and the
Post-monolithic World

API Gateway - non-security benefits

⊡Can expose different APIs for each client
⊡Routes requests to different microservices

□ e.g. desktop vs. mobile

⊡Can create “mash-ups” using multiple microservices
□ Microservices may be too granular to access individually

⊡Abstracts service instances and their location
⊡Hides service partitioning from clients

□ Can change over time

⊡Provides protocol translation

Importance of User-level Security Context
and E2E trust

Importance of user-level security
context and E2E trust

⊡ User-level security context
□ knowing who the user is and what level of authN they passed

⊡ In traditional systems, users-level security context is not
carried throughout the call chain

□ Downstream components perform service level authN (e.g. logic layer
to data layer)

⊡ Problem: access to all data provided to a service account
□ Too permissive and against principle of least privilege
□ No comprehensive auditing of specific actions related to a user

Importance of user-level security
context and E2E trust

⊡ All services should take user-level security context into account
before allowing access

⊡ A security token can be used to determine user’s security
context before servicing the request

□ Tokens must be signed (also encrypted if there is a confidentiality concern)

⊡ API invocation may involve calls across several downstream
microservices

□ Need to authenticated user’s security context
□ = User-level End-to-end (E2E) trust

Importance of user-level security
context and E2E trust

⊡ User-level E2E Trust
□ Communicate the authenticated user’s security context to all parties

across the call chain
□ Each party can take appropriate action based on user security context
□ Can use a token-exchange end-point or E2E trust tokens

⊡ Service-level trust should also be in place
□ Prevents compromised trust tokens from playback by others
□ Use overlay networking, mutual TLS, service account + TLS

Importance of user-level security
context and E2E trust

⊡ Token-exchange end-point
□ Services can exchange a token for one with the required scope + protocol for

the next service
□ Limits the amount of access granted and allows for heterogenous protocol use
□ May be handled by the same end-point that issues the initial security tokens
□ Each microservice verifies the token and provides access based on context,

claims, scope

⊡ E2E trust tokens
□ Generated at the gateway after initial set of policies are enforced
□ All microservices must have the same scope + protocol, or policy information

Importance of user-level security
context and E2E trust

Importance of user-level security
context and E2E trust

⊡ User-level E2E trust is established among microservices of
the same application or service
⊡ All in the same application trust-zone (same IdP, same policies)

⊡ What about access to microservices in another trust-zone?
□ Need to go through API-gateway for that microservice
□ Can accept the security token if there is a trust relationship
□ E2E trust tokens need to be re-issued

The Need for AuthZ

The Need for AuthZ

⊡ Each microservice may have specific authZ requirements
□ E.g. Bank account microservice to only allow read ops to a chequing

account for a specific user with basic authN, but allow read/write with 2FA

⊡ Security token service can issue a token based on:
□ Resource requested
□ Scope or type of request
□ User’s security context

⊡ Token’s claims can include:
□ End-user and issuer’s identity
□ Identities of specific consumers
□ Expiration time

The Need for AuthZ

⊡ Each microservice verifies the authenticity of the token first
⊡ Access is provided based on valid authorized claims and scope
⊡ Using a single E2E trust token, each microservice handles authZ

□ Requires policy information at each microservice

⊡ Token-exchange service can be used to obtain a new token for
downstream calls

□ Allows more flexibility and better access control

What AuthN and AuthZ
Protocols Can I Use?

What AuthN and AuthZ
Protocols Can I Use?

⊡ SAML
□ Used for AuthN and AuthZ; XML based

⊡ Open ID (Now replaced by OpenID Connect)

□ Used for AuthN only

⊡ OAuth (latest V. 2.0)

□ Provides AuthZ only (access token), Used for access delegation
□ Can use JSON Web Tokens (JWT)

⊡ OpenID Connect (latest V. 1.0)

□ Used for AuthN + AuthZ; Extension of OAuth 2.0; Uses JSON
□ Supports ID + access tokens

Invocation by External
Applications and Services

Invocation by External Applications
and Services

⊡ APIs may be invoked by services outside trust boundary
⊡ Establish trust between the two domains

□ Verify authenticity of user’s security context presented by the token

⊡ API gateway can then issue a new security trust token
□ To be used downstream
□ Security policies may be different, so should not accept security tokens from another

application or service
□ Should only be issued if appropriate security policies pass

⊡ Without central handling, each microservice would need a trust
relationship with external consumers!

What Other Security Issues Should I
Care About?

Security Policies

⊡ In addition to AuthN and AuthZ, consider:
□ Rate-limiting
□ JSON threat protection
□ XML threat protection
□ Custom policies

■ Centrally address other application security attacks or specific needs

⊡ Provide pre-built policies to developers
■ Eases the development process
■ Avoids learning curve and mistakes

Apply Group Policy

⊡ Grouping objects and applying policies is not new
⊡ Helps in consistent application of policies
⊡ This principle should be applied to APIs as well

□ Group APIs that address a particular business need
□ Provide the group to Devs along with a service plan and set of policies

⊡ Security trust token issued valid only for APIs in that group
□ Account Servicing application (internal, XML based, uses AD)

■ Policies: AD AuthN/AuthZ, XML threat protection, rate-limiting for internal

□ Shopping site (external, JSON based, uses LDAP)
■ Policies: LDAP AuthN/AuthZ, JSON threat protection, rate-limiting for external

Don’t Forget to
Log, Monitor, and Detect

⊡ Detective controls are important
□ E.g. logging and monitoring

⊡ APIs should log important events including security
□ Logs should be centrally aggregated, correlated and monitored
□ Success or failure of policy checks should be logged
□ Other info useful in DoS detection and better profiling of the system

■ E.g. number of API invocations/sec, response time, etc.

⊡ API logs can help with fraud prevention
□ E.g. by providing info about consuming device and location

Take-away Considerations

Take-away Considerations

⊡ Maintain user-level E2E trust across the entire journey
⊡ Enforce AuthZ at the right place & right level of granularity
⊡ Group APIs to apply configurable policies consistently
⊡ Use an API gateway to centrally enforce policies
⊡ Don’t forget to log, monitor and detect
⊡ Follow a defense-in-depth strategy
⊡ Build security into the service architecture and design

Q&A

Contact: Farshad Abasi
f.abasi@fwdsec.com / @FWD_SEC

https://developer.ibm.com/series/securing-modern-apps-api-microservices/

