et
Securing Modern APland .S

Mlcroserwce Based
Agpllcatlons by Design

A closer look at security concerns for modern applications
Farshad Abasi / Forward Security

FWDSEC»



About Me

Farshad Abasi

Based in: Vancouver, BC, Canada

UBC alumnus: Biology, Computer Science
CSO/Founder: Forward Security

Instructor: BCIT

News correspondent: CFAX AM1070 (Victoria)
Board member: BSides Vancouver / MARS
Chapter Lead: OWASP Vancouver

Avid music fan and food lover!

FWDSEC



This presentation provides an overview of the
subject matter, and architectural take-aways

from a security perspective.

FWDSEC»



Overview

What are services and microservices?

What about APIs?

The API Gateway and the Post-monolithic World
Importance of user-level security context and E2E trust
The Need for AuthZ

What AuthN and AuthZ Protocols Can | use?
Invocation by external applications and services

What other security issues should | care about?

Take-away considerations

FWDSEC




What Are Microservices?

FWDSEC»



Microservices

“Microservices are a software development technique - a
variant of the service-oriented architecture (SOA) architectural
style that structures an application as a collection of loosely
coupled services. In a microservices architecture, services are
fine-grained and the protocols are lightweight.”

- Wikipedia

FWDSEC»



What Are Microservices?

Monolithic Applications
Functions tightly coupled together

Do not scale well

Specially when different components had different resource requirements

Often large and too complex to be understood by one developer
Slow down development and deployment
Do not protect components from other components’ issues

Difficult to rewrite if you need to adopt new frameworks

FWDSEC



What Are Microservices?

General move towards re-architecting traditional “monolithic”
services and applications

Applications and services decomposed into smaller “microservices”

Monolithic Microservices-based
Application Application

FWDSEC



What Are Microservices?

Service Oriented Architecture (SOA)

Loosely coupled components, each delivering a specific service
Services communicate using an Enterprise Message Bus and SOAP + XML

Microservices Architecture

Also made up of loosely coupled component
Each MS delivers a specific function (more fine-grained than SOA)
Typically communicate using a gateway and HTTP

Enterprise Service Bus

(. J . J (. J
Monolithic Monolithic Microservices-based Monolithic

Application or Service Application or Service Application or Service Application or Service



What Are Microservices?

Microservices

Hosted inside containers New set of challenges

Complexities of distributed systems

Lightweight, less overhead
development

Typically exposed via APls

Maintenance of data consistency
Directly or via gateway across the microservices

Light-weight protocols used (HTTP + JSON) Deployment

Not all MS are exposed externally Increased memory consumption
Each one is independent

Has its own database

Allows for decoupling from others

Well suited for Agile and CI/CD

FWDSEC



What About APIs?

FWDSEC»



APIs

“(API) In general terms, is a set of clearly defined methods of
communication among various components. A good APl makes it
easier to develop a computer program by providing all the building
blocks, which are then put together by the programmer.”

- Wikipedia

FWDSEC»



What About APIs?

Application Programming Interface (API)
Used by software components to communicate
Been around for a long time

Can be used to build components that work together

Inner working knowledge of other components is not required

Only need to know what functions are exposed (good separation)

Service A APl | Service B

FWDSEC



What About APIs?

‘Bpos,ure Gatxvau?xu_mz

Many modern applications are
web-based
Expose Web APIs using HTTP and JSON

Web APIs typically RESTful &
follow ROA

Used to communicate to:

Enterprise Boundary

Internal components/functions (intra-
application)

External components/functions (inter-
application)

Business
Partner
SaaS
Application

FWDSEC



The APl Gateway and the

Post-Monolithic World

FWDSEC»



The API Gateway and the
Post-monolithic World

Monolithic applications
All functions inside the same “walled garden”
Protected by single point of entry
User-journey does not typically require further AuthN
Functions inside cannot be invoked by outsiders
AuthZ can happen at gate or functional level

Microservices

No more “wall” with single point of entry
Each function/MS could be accessed via its API

Need to ensure user is authentic without full re-AuthN

FWDSEC



The API Gateway and the
Post-monolithic World

Coxiner ——

Account

Container AGBA Database

A Account Service] ———

Mobile A@A Coxjner ——

: Customer Service @ User
client
AA Database
User Service —

Container

‘@\ Order
m ‘ A Database

Client API Order Service
Gateway

Container Container

A Inventory
AN\ AN [ e

External Service Inventory Service

FWDSEC



The API Gateway and the
Post-monolithic World

API| Gateway - security benefits

Acts as the single point of entry

Central enforcement of security policies (AuthN, AuthZ, etc.)
Guards the APIs/microservices

Can issue tokens once security policies are met
"Heavy” AuthN takes place at the gateway
Should use an IAM to properly handle AuthN + AuthZ
Tokens used for “light” AuthN & AuthZ when accessing microservices
E.g. ID token and Access Token in OpenID Connect
Lowers the exposure of “long term” credentials

FWDSEC



The API Gateway and the
Post-monolithic World

APl Gateway - non-security benefits

Can expose different APIs for each client
Routes requests to different microservices
e.g. desktop vs. mobile

Can create “mash-ups” using multiple microservices

Microservices may be too granular to access individually

Abstracts service instances and their location

Hides service partitioning from clients

Can change over time

Provides protocol translation FWDSEG



Importance of User-level Security Context

and E2E trust

FWDSEC»



Importance of user-level security
context and E2E trust

User-level security context

knowing who the user is and what level of authN they passed

In traditional systems, users-level security context is not
carried throughout the call chain

Downstream components perform service level authN (e.g. logic layer
to data layer)

Problem: access to all data provided to a service account

Too permissive and against principle of least privilege

No comprehensive auditing of specific actions related to a user

FWDSEC



Importance of user-level security
context and E2E trust

All services should take user-level security context into account
before allowing access

A security token can be used to determine user’s security
context before servicing the request

Tokens must be signed (also encrypted if there is a confidentiality concern)

APl invocation may involve calls across several downstream
microservices

Need to authenticated user’s security context
= User-level End-to-end (E2E) trust

FWDSEC



Importance of user-level security
context and E2E trust

User-level E2E Trust

Communicate the authenticated user’s security context to all parties
across the call chain

Each party can take appropriate action based on user security context

Can use a token-exchange end-point or E2E trust tokens
Service-level trust should also be in place

Prevents compromised trust tokens from playback by others

Use overlay networking, mutual TLS, service account + TLS

FWDSEC



Importance of user-level security
context and E2E trust

Token-exchange end-point

Services can exchange a token for one with the required scope + protocol for
the next service

Limits the amount of access granted and allows for heterogenous protocol use
May be handled by the same end-point that issues the initial security tokens

Each microservice verifies the token and provides access based on context,
claims, scope

E2E trust tokens

Generated at the gateway after initial set of policies are enforced

All microservices must have the same scope + protocol, or policy information

FWDSEC



Importance of user-level security
context and E2E trust

User Interface

API

Gateway l Security Token

Service

4 Y K

Microservice 1 Microservice 2 Microservice 3

L I I Exchange
Service

Application A

FWDSEC



Importance of user-level security
context and E2E trust

User-level E2E trust is established among microservices of
the same application or service

All in the same application trust-zone (same IdP, same policies)
What about access to microservices in another trust-zone?

Need to go through API-gateway for that microservice
Can accept the security token if there is a trust relationship

E2E trust tokens need to be re-issued

FWDSEC



The Need for AuthZ

FWDSEC»



The Need for AuthZ

Each microservice may have specific authZ requirements

E.g. Bank account microservice to only allow read ops to a chequing
account for a specific user with basic authN, but allow read/write with 2FA

Security token service can issue a token based on:
Resource requested
Scope or type of request

User’s security context

Token’s claims can include:

End-user and issuer’s identity

Identities of specific consumers

Expiration time FWDSEC))



The Need for Authz

Each microservice verifies the authenticity of the token first

Access is provided based on valid authorized claims and scope

Using a single E2E trust token, each microservice handles authZ
Requires policy information at each microservice

Token-exchange service can be used to obtain a new token for
downstream calls

Allows more flexibility and better access control

FWDSEC



What AuthN and AuthZ

Protocols Can | Use?

FWDSEC»



What AuthN and AuthZ
Protocols Can | Use?

SAML
Used for AuthN and AuthZ; XML based

Open ID (Now replaced by OpenID Connect)
Used for AuthN only

OAuth (atest v. 2.0)

Provides AuthZ only (access token), Used for access delegation
Can use JSON Web Tokens (JWT)
OpenlD Connect (iatest v. 1.0)

Used for AuthN + AuthZ; Extension of OAuth 2.0; Uses JSON
Supports ID + access tokens

FWDSEC



Invocation by External

Applications and Services

FWDSEC»



Invocation by External Applications
and Services

APls may be invoked by services outside trust boundary
Establish trust between the two domains
Verify authenticity of user’s security context presented by the token

APl gateway can then issue a new security trust token
To be used downstream

Security policies may be different, so should not accept security tokens from another
application or service

Should only be issued if appropriate security policies pass

Without central handling, each microservice would need a trust

relationship with external consumers!

FWDSEC



What Other Security Issues Should |

Care About?

FWDSEC»



Security Policies

In addition to AuthN and AuthZ, consider:
Rate-limiting
JSON threat protection
XML threat protection

Custom policies
Centrally address other application security attacks or specific needs
Provide pre-built policies to developers

Eases the development process

Avoids learning curve and mistakes

FWDSEC



Apply Group Policy

Grouping objects and applying policies is not new
Helps in consistent application of policies
This principle should be applied to APIs as well

Group APIs that address a particular business need

Provide the group to Devs along with a service plan and set of policies

Security trust token issued valid only for APIs in that group

Account Servicing application (internal, XML based, uses AD)
Policies: AD AuthN/AuthZ, XML threat protection, rate-limiting for internal

Shopping site (external, JSON based, uses LDAP)
Policies: LDAP AuthN/AuthZ, JSON threat protection, rate-limiting for external

FWDSEC



Don’t Forget to
Log, Monitor, and Detect

Detective controls are important

E.g. logging and monitoring

APIs should log important events including security

Logs should be centrally aggregated, correlated and monitored
Success or failure of policy checks should be logged
Other info useful in DoS detection and better profiling of the system

E.g. number of APl invocations/sec, response time, etc.

API logs can help with fraud prevention

E.g. by providing info about consuming device and location

FWDSEC



Take-away Considerations

FWDSEC»



Take-away Considerations

Maintain user-level E2E trust across the entire journey
Enforce AuthZ at the right place & right level of granularity
Group APIs to apply configurable policies consistently

Use an API gateway to centrally enforce policies

Don’t forget to log, monitor and detect

Follow a defense-in-depth strategy

Build security into the service architecture and design

FWDSEC



Q&A

Contact: Farshad Abasi
f.abasi@fwdsec.com / @FWD_SEC

https://developer.ibm.com/series/securing-modern-apps-api-microservices/

FWDSEC»



